Daily Stock Market Forecast from Textual Web Data
نویسندگان
چکیده
Data mining can be described as “making better use of data”. Every human being is increasingly faced with unmanageable amounts of data, hence, data mining or knowledge discovery apparently affects all of us. It is therefore recognized as one of the key research areas. Ideally, we would like to develop techniques for “making better use of any kind of data for any purpose”. However, we argue that this goal is too demanding yet. It may sometimes be more promising to develop techniques applicable to specific data and with a specific goal in mind. In this paper, we describe such an application driven data mining system. Our aim is to predict stock markets using information contained in articles published on the Web. Mostly textual articles appearing in the leading and influential financial newspapers are taken as input. From those articles the daily closing values of major stock market indices in Asia, Europe and America are predicted. Textual statements contain not only the effect (e.g. the stocks plummet) but also why it happened (e.g. because of weakness in the dollar and consequently a weakening of the treasury bonds). Exploiting textual information in addition to numeric time series data increases the quality of the input. Hence improved predictions are expected. The forecasts are available real-time via www.cs.ust.hk/~beat/Predict daily at 7:45 am Hong Kong time. Hence all predictions are ready before Tokyo, Hong Kong and Singapore, the major Asian markets, start trading. The system’s accuracy for this tremendously difficult but also extremely challenging application is highly promising.
منابع مشابه
Daily Prediction of Major Stock Indices from Textual WWW Data
We predict stock markets using information contained in articles published on the Web. Mostly textual articles appearing in the leading and the most influential financial newspapers are taken as input. From those articles the daily closing values of major stock market indices in Asia, Europe and America are predicted. Textual statements contain not only the effect (e.g., stocks down) but also t...
متن کاملBehavioral Finance Models and Behavioral Biases in Stock Price Forecasting
Stock market is affected by news and information. If the stock market is not efficient, the reaction of stock price to news and information will place the stock market in overreaction and under-reaction states. Many models have been already presented by using different tools and techniques to forecast the stock market behavior. In this study, the reaction of stock price in the stock market was ...
متن کاملStock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملAn Analysis of the Performance of Artificial Neural Network Technique for Stock Market Forecasting
In this paper, we showed a method to forecast the daily stock price using neural networks and the result of the Neural Network forecast is compared with the Statistical forecasting result. Stock price prediction is one of the emerging field in neural network forecasting area. This paper also presents the Neural Networks ability to forecast the daily Stock Market Prices. Stock market prediction ...
متن کاملAn Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market
Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998